1,402 research outputs found

    Organizational stressors, coping, and coping effectiveness in collegiate squash players.

    Get PDF
    Coping is defined as “constantly changing cognitive and behavioural efforts to manage specific external and/or internal demands that are appraised as taxing or exceeding the resources of the person” (Lazarus & Folkman, 1984, p. 141). It has been suggested that research is needed to explore and evaluate the effectiveness of the coping strategies that athletes use to deal with the organizational stressors they encounter (Fletcher, Hanton, & Mellalieu, 2006). Therefore, this study explored the relationships between the organizational stressors encountered and the coping strategies employed to manage them. Furthermore, the effectiveness of these strategies was examined. Data were collected from eight Caucasian male squash players (Mage 20.88, SD = 1.46 years) using daily diaries over a 28-day period of training and competition. The results reveal that participants encountered a wide range of organizational stressors, the most common being “factors intrinsic to the sport” and “sport relationships and interpersonal demands”. The most common coping strategy employed to manage these demands was problem-focused coping, few strategies were used to cope with more than one stressor, and the effectiveness of the coping strategies used varied for each dimension of stressors. By investigating the relationships between organizational stressors and coping, and examining the effectiveness of these strategies, this study furthers our understanding of coping in sport performers and highlights the important role of effective coping in the organizational stress process. Furthermore, the results suggest that the most effective coping strategies were stressor-specific, which has important implications for applied practitioners. In order to implement effective psychological skills training and encourage athletes to manage the array of organizational stressors that they encounter, the stressor-coping relationships should be considered to allow practitioners to educate athletes on the most effective ways to deal with different stressors

    On traces for H(curl,Ω) in Lipschitz domains

    Get PDF
    AbstractWe study tangential vector fields on the boundary of a bounded Lipschitz domain Ω in R3. Our attention is focused on the definition of suitable Hilbert spaces corresponding to fractional Sobolev regularities and also on the construction of tangential differential operators on the non-smooth manifold. The theory is applied to the characterization of tangential traces for the space H(curl,Ω). Hodge decompositions are provided for the corresponding trace spaces, and an integration by parts formula is proved

    Skilful prediction of Sahel summer rainfall on inter-annual and multi-year timescales

    Get PDF
    This is the final version of the article. Available from Springer Nature via the DOI in this record.Summer rainfall in the Sahel region of Africa exhibits one of the largest signals of climatic variability and with a population reliant on agricultural productivity, the Sahel is particularly vulnerable to major droughts such as occurred in the 1970s and 1980s. Rainfall levels have subsequently recovered, but future projections remain uncertain. Here we show that Sahel rainfall is skilfully predicted on inter-annual and multi-year (that is, >5 years) timescales and use these predictions to better understand the driving mechanisms. Moisture budget analysis indicates that on multi-year timescales, a warmer north Atlantic and Mediterranean enhance Sahel rainfall through increased meridional convergence of low-level, externally sourced moisture. In contrast, year-to-year rainfall levels are largely determined by the recycling rate of local moisture, regulated by planetary circulation patterns associated with the El Niño-Southern Oscillation. Our findings aid improved understanding and forecasting of Sahel drought, paramount for successful adaptation strategies in a changing climate.This work was supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101) and the EU FP7 SPECS project. The contribution of D.P.R. has received funding from the NERC/DFID Future Climate for Africa programme under the AMMA-2050 project, grant number NE/M019977/1

    A programme for the prevention of post-traumatic stress disorder in midwifery (POPPY): indications of effectiveness from a feasibility study

    Get PDF
    Background: Midwives can experience events they perceive as traumatic when providingcare. As a result, some will develop post-traumatic stress disorder (PTSD), with adverse implications for their mental health, the quality of care provided for women and the employing organizations. POPPY (Programme for the prevention of PTSD in midwifery) is a package of educational and supportive resources comprising an educational workshop, information leaflet, peer support and access to trauma-focused clinical psychology intervention. A feasibility study of POPPY implementation was completed. Objective: This study aimed to identify potential impacts of POPPY on midwives’ understandingof trauma, their psychological well-being and job satisfaction. Method: POPPY was implemented in one hospital site. Before taking part in the POPPY workshop (T1) midwives (N = 153) completed self-report questionnaires, which measured exposure to work-related trauma, knowledge and confidence of managing trauma responses, professional impacts, symptoms of PTSD, burnout and job satisfaction. Measures were repeated (T2) approximately 6 months after training (n = 91, 62%). Results: Midwives’ confidence in recognizing (p = .001) and managing early traumaresponses in themselves and their colleagues significantly improved (both p < .001). There was a trend towards reduced levels of PTSD symptomatology, and fewer midwives reported sub clinical levels of PTSD (from 10% at T1 to 7% at T2). The proportion of midwives reporting high and moderate levels of depersonalization towards care was reduced (33% to 20%) and midwives reported significantly higher levels of job satisfaction at T2 (p < .001). Reductions in self-reported stress-related absenteeism (12% to 5%), long-term changes to clinical allocation (10% to 5%) and considerations about leaving midwifery (34% to 27%) were identified. Conclusions: In conclusion, POPPY shows very positive potential to improve midwives’ mental health and the sensitivity of care they provide, and reduce service disruption and costs for trusts. Large-scale longitudinal evaluation is required

    F. John's stability conditions vs. A. Carasso's SECB constraint for backward parabolic problems

    Full text link
    In order to solve backward parabolic problems F. John [{\it Comm. Pure. Appl. Math.} (1960)] introduced the two constraints "∄u(T)∄≀M\|u(T)\|\le M" and ∄u(0)−g∄≀Ύ\|u(0) - g \| \le \delta where u(t)u(t) satisfies the backward heat equation for t∈(0,T)t\in(0,T) with the initial data u(0).u(0). The {\it slow-evolution-from-the-continuation-boundary} (SECB) constraint has been introduced by A. Carasso in [{\it SIAM J. Numer. Anal.} (1994)] to attain continuous dependence on data for backward parabolic problems even at the continuation boundary t=Tt=T. The additional "SECB constraint" guarantees a significant improvement in stability up to t=T.t=T. In this paper we prove that the same type of stability can be obtained by using only two constraints among the three. More precisely, we show that the a priori boundedness condition ∄u(T)∄≀M\|u(T)\|\le M is redundant. This implies that the Carasso's SECB condition can be used to replace the a priori boundedness condition of F. John with an improved stability estimate. Also a new class of regularized solutions is introduced for backward parabolic problems with an SECB constraint. The new regularized solutions are optimally stable and we also provide a constructive scheme to compute. Finally numerical examples are provided.Comment: 15 pages. To appear in Inverse Problem

    GASP II. A MUSE view of extreme ram-pressure stripping along the line of sight: kinematics of the jellyfish galaxy JO201

    Get PDF
    This paper presents a spatially-resolved kinematic study of the jellyfish galaxy JO201, one of the most spectacular cases of ram-pressure stripping (RPS) in the GASP (GAs Stripping Phenomena in Galaxies with MUSE) survey. By studying the environment of JO201, we find that it is moving through the dense intra-cluster medium of Abell 85 at supersonic speeds along our line of sight, and that it is likely accompanied by a small group of galaxies. Given the density of the intra-cluster medium and the galaxy's mass, projected position and velocity within the cluster, we estimate that JO201 must so far have lost ~50% of its gas during infall via RPS. The MUSE data indeed reveal a smooth stellar disk, accompanied by large projected tails of ionised (Halpha) gas, composed of kinematically cold (velocity dispersion <40km/s) star-forming knots and very warm (>100km/s) diffuse emission which extend out to at least ~50 kpc from the galaxy centre. The ionised Halpha-emitting gas in the disk rotates with the stars out to ~6 kpc but in the disk outskirts becomes increasingly redshifted with respect to the (undisturbed) stellar disk. The observed disturbances are consistent with the presence of gas trailing behind the stellar component, resulting from intense face-on RPS happening along the line of sight. Our kinematic analysis is consistent with the estimated fraction of lost gas, and reveals that stripping of the disk happens outside-in, causing shock heating and gas compression in the stripped tails.Comment: ApJ, revised version after referee comments, 15 pages, 16 figures. The interactive version of Figure 9 can be viewed at web.oapd.inaf.it/gasp/publications.htm

    Effect of Impurity Scattering on the Nonlinear Microwave Response in High-Tc Superconductors

    Get PDF
    We theoretically investigate intermodulation distortion in high-Tc superconductors. We study the effect of nonmagnetic impurities on the real and imaginary parts of nonlinear conductivity. The nonlinear conductivity is proportional to the inverse of temperature owing to the dependence of the damping effect on energy, which arises from the phase shift deviating from the unitary limit. It is shown that the final-states interaction makes the real part predominant over the imaginary part. These effects have not been included in previous theories based on the two-fluid model, enabling a consistent explanation for the experiments with the rf and dc fields

    Constitutively Activated PI3K Accelerates Tumor Initiation and Modifies Histopathology of Breast Cancer

    Get PDF
    The gene encoding phosphatidylinositol 3-kinase catalytic subunit α-isoform (PIK3CA, p110α) is frequently activated by mutation in human cancers. Based on detection in some breast cancer precursors, PIK3CA mutations have been proposed to have a role in tumor initiation. To investigate this hypothesis, we generated a novel mouse model with a Cre-recombinase regulated allele of p110α (myristoylated-p110α, myr-p110α) along with p53fl/fl deletion and KrasG12D also regulated by Cre-recombinase. After instillation of adenovirus-expressing Cre-recombinase into mammary ducts, we found that myr-p110α accelerated breast tumor initiation in a copy number-dependent manner. Breast tumors induced by p53fl/fl;KrasG12D with no or one copy of myr-p110α had predominantly sarcomatoid features, whereas two copies of myr-p110α resulted in tumors with a carcinoma phenotype. This novel model provides experimental support for importance of active p110α in breast tumor initiation, and shows that the amount of PI3K activity can affect the rate of tumor initiation and modify the histological phenotype of breast cancer

    Modification of turbulent dissipation rates by a deep Southern Ocean eddy

    Get PDF
    The impact of a mesoscale eddy on the magnitude and spatial distribution of diapycnal ocean mixing is investigated using a set of hydrographic and microstructure measurements collected in the Southern Ocean. These data sampled a baroclinic, mid-depth eddy formed during the disintegration of a deep boundary current. Turbulent dissipation is suppressed within the eddy, but is elevated by up to an order of magnitude along the upper and lower eddy boundaries. A ray-tracing approximation is employed asa heuristic device to elucidate how the internal wave field evolves in the ambient velocity and stratification conditions accompanying the eddy. These calculations are consistent with the observations, suggesting reflection of internal wave energy from the eddy center and enhanced breaking through critical layer processes along the eddy boundaries. These results have important implications for understanding where and how internal wave energy is dissipated in the presence of energetic deep geostrophic flows
    • 

    corecore